
One sided limits.

Can we calculate limx→0

√
x? We cannot verify the ε - δ definition because

any deleted neighbourhood of 0 must be of the form (−δ, 0)∪(0, δ) and so will
contain negative x for which

√
x is not defined. We must conclude, therefore,

that limx→0

√
x is not defined.

Yet, from the graph,

it seems that we could talk meaningfully of the limit of
√
x as x approaches

0 from the right.

Definition 1.1.15 Right hand limit: Suppose that f : A→ R is defined
for x to the right of a ∈ R, i.e. in an interval (a, a+ α) for some α > 0.
Then

lim
x→a+

f(x) = L

if, and only if, for any ε > 0 there exists δ > 0 such that if a < x < a + δ
then |f(x)− L| < ε. That is:

∀ε > 0, ∃ δ > 0, ∀x ∈ A, a < x < a+ δ =⇒ |f(x)− L| < ε.

We sometimes write f(a+) for limx→a+ f(x).

Definition 1.1.16 Left hand limit: Suppose that f : A → R is defined
for x to the left of a ∈ R, i.e. in an interval (a− β, a) for some β > 0. Then

lim
x→a−

f(x) = L

if, and only if, for any ε > 0 there exists δ > 0 such that if a − δ < x < a
then |f (x)− L| < ε. That is:

∀ε > 0, ∃ δ > 0, ∀x ∈ A, a− δ < x < a =⇒ |f(x)− L| < ε.

We sometimes write f(a−) for limx→a− f(x).

Note how in both definitions we exclude x = a as we did in the definition of
the (two-sided) limit.
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Example 1.1.17 Verify the definition to prove that limx→0+

√
x = 0.

Solution Let ε > 0 be given, choose δ = ε2 and assume x satisfies 0 < x <
0 + δ. For such x we have

∣

∣

√
x− 0

∣

∣ <
√
δ =

√
ε2 = ε.

Hence we have verified the definition that limx→0+

√
x = 0. �

The following is the first Theorem of the course. The result is useful when
a function is defined in different ways to the left and right of the limit point.
It is also useful when showing that a limit does not exist.

Theorem 1.1.18 Let f : A → R be a function whose domain contains a
deleted neighbourhood of a ∈ R. Then

lim
x→a

f(x) = L

if, and only if,
lim
x→a+

f(x) = L and lim
x→a−

f(x) = L.

So a (two-sided) limit exists if and only if both one-sided limits exist and are
equal.

Proof (=⇒) Assume limx→a f(x) = L. Let ε > 0 be given. Then limx→a f(x) =
L implies ∃ δ > 0 : ∀x : 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

Assume x : a < x < a+δ. Then 0 < x−a < δ which implies 0 < |x− a| <
δ. Thus, by the previous line, |f(x)− L| < ε. Hence we have shown that

∀ε > 0, ∃ δ > 0 : ∀x : a < x < a+ δ =⇒ |f(x)− L| < ε.

This is the definition of limx→a+ f(x) = L.

The verification of limx→a− f(x) = L will follow from the fact that a−δ <
x < a implies 0 < |x− a| < δ.

(⇐=) Assume limx→a+ f(x) = L and limx→a− f(x) = L. Let ε > 0 be given.

(1) limx→a+ f(x) = L implies ∃ δ1 > 0 such that ∀x : a < x < a + δ1 =⇒
|f(x)− L| < ε.

(2) limx→a− f(x) = L implies ∃ δ2 > 0 such that ∀x : a − δ2 < x < a =⇒
|f(x)− L| < ε.
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Let δ = min (δ1, δ2) and assume x satisfies 0 < |x− a| < δ. There are
two cases, x > a and x < a.

If x > a then, combined with 0 < |x− a| < δ, this means a < x < a+ δ.
Yet δ ≤ δ1 so a < x < a+ δ1 and thus |f(x)− L| < ε by (1).

If x < a then, combined with 0 < |x− a| < δ, this means a− δ < x < a.
Yet δ ≤ δ2 so a− δ2 < x < a and thus |f(x)− L| < ε by (2).

In both cases |f(x)− L| < ε and so 0 < |x− a| < δ =⇒ |f(x)− L| < ε.

Hence we have verified the definition of limx→a f(x) = L. �

Note you can now see why you need to learn the definitions. In the Theorem
you are told that limx→a f (x) = L exists. You can only use this information if
you know what saying that the ‘limit of f at a is L’ means, i.e. what it means
mathematically, in symbols.

Advice for the exams. This is the first of many theorems in
this course and it is important that you learn the statements and
proofs of them all. Perhaps it is too daunting to learn all the
proofs so

• start learning them immediately, do not leave revision until the last
minute. Unfortunately you won’t remember a proof by reading it, you
will have to write it out (probably a number of times).

• note that however long a proof it normally contains only one ‘idea’.
Remember that idea and the rest of the proof often follows.

You can start, though, with learning the statements of the proofs.
You should attempt to memorise them so well that you can write
them down with no thought. As with definitions if I ask for the
statement of a Theorem in the exam then that is the opportunity
for you to gain easy marks.

The contrapositive of Theorem 1.1.18 is

Corollary 1.1.19 Let f : A → R be a function whose domain contains a
deleted neighbourhood of a ∈ R. Then if either one-sided limit fails to exist
at a or they both exist but with different values then the limit at a does not
exist.

For an example of an application of this we start with
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Definition 1.1.20 The signum function, sgn (x) , is defined for x 6= 0 by

sgn (x) =
x

|x| =
{

+1 if x > 0
−1 if x < 0

Note that sgn (0) is not defined.

Then, as a second example of a function without a limit at a point we
have

Example 1.1.21 The limit
lim
x→0

sgn (x)

does not exist.

Solution

lim
x→0+

sgn (x) = lim
x→0+

1 = 1 and lim
x→0−

sgn (x) = lim
x→0−

−1 = −1.

Since the limits are different limx→0 sgn (x) does not exist. �

The graph of sgn (x) is

−1

1

Limit of a function at infinity.

Definition 1.1.22 Assume f : A → R is defined for all sufficiently large
positive x. Then

lim
x→+∞

f(x) = L

if, and only if, for all ε > 0 there exists an X > 0 such that if x > X then
|f(x)− L| < ε.

Symbolically

∀ε > 0, ∃X > 0 : ∀x, x > X =⇒ |f(x)− L| < ε. (4)
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A graphical illustration would be

L

L+ǫ

L−ǫ

X

x

y

Definition 1.1.23 Assume f : A → R is defined for all sufficiently large
negative x. Then

lim
x→−∞

f(x) = L

if, and only if, for all ε > 0 there exists an X < 0 such that if x < X then
|f(x)− L| < ε.

Symbolically

∀ε > 0, ∃X < 0 : ∀x, x < X =⇒ |f(x)− L| < ε.

Note 1 The symbols +∞ (also simply known as ∞) and −∞ are not real
numbers. You can not say

1

0
=∞ or

1

∞ = 0.

The symbols are used in this course simply as a shorthand notation. So x→ +∞
should be read as “x takes arbitrarily large positive values”, similarly x → −∞
is shorthand for “x takes arbitrarily large negative values”.

Note 2 In the previous definition we have X < 0 and x < X. This means that
x is negative and is of greater magnitude than X, i.e. |x| > |X|. So don’t think
that x < X means that x is “smaller” than X.

Example 1.1.24 Find

lim
x→+∞

x2

x2 + 1
,

and verify the ε -X definition.
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Solution When x is large (in magnitude) then x2 + 1 ‘looks like’ x2 and so
x2/(x2 + 1) ‘looks like’ x2/x2 = 1. So we guess that the limit is 1.

Assume ε > 0 has been given, choose X = 1/
√
ε > 0 and assume x > X.

For such x consider

|f(x)− L| =

∣

∣

∣

∣

x2

x2 + 1
− 1

∣

∣

∣

∣

=
1

x2 + 1
<

1

x2
<

1

X2

=
1

(1/
√
ε)

2
= ε.

Hence we have verified the ε -X definition that limx→+∞ x2/(x2 + 1) = 1. �

Graphically:

1

x

y

The case of x→ −∞ is left to Tutorial.

Example 1.1.25 Find

lim
x→+∞

x2

x2 − 1
= 1

and verify the ε -X definition.

Solution in Tutorial. Assume ε > 0 has been given, choose

X =

(

1 +
1

ε

)1/2

,

and assume x > X. For such x consider

|f(x)− L| =
∣

∣

∣

∣

x2

x2 − 1
− 1

∣

∣

∣

∣

=
1

x2 − 1
,
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since x > 1. Continuing, since x > X and X2 = 1 + 1/ε, we have

1

x2 − 1
≤ 1

X2 − 1
=

1

(1 + 1/ε)− 1
= ε.

That is,
|f(x)− L| < ε.

Hence we have verified the ε -X definition that limx→−∞ x2/(x2 − 1) = 1.
�

Note In the proof that limx→−∞ x2/(x2 + 1) = 1 we made use of the upper
bound 1/(x2 + 1) < 1/x2. It would be false to say 1/(x2 − 1) < 1/x2. Instead
we could increase the numerator and claim 1/(x2 − 1) < 2/x2 for x >

√
2.

This would then lead to the choice of X = max
(√

2, 2/
√
ε
)

.

Another example

Example 1.1.26 Find

lim
x→−∞

x

x+ 1
,

and verify the ε -X definition.

Solution Rough work When x is large (in magnitude) then x+1 ‘looks like’
x and so x/(x+ 1) ‘looks like’ x/x = 1. So we guess that the limit is 1.

Assume x < X with X < 0 to be found. In fact, assume x < −1 so, in
particular, x+ 1 6= 0. For such x consider

|f(x)− L| =
∣

∣

∣

∣

x

x+ 1
− 1

∣

∣

∣

∣

=
1

|x+ 1| .

We wish this to be < ε. Thus we have to find upper bounds on 1/|x+ 1|
or, equivalently, lower bounds on |x+ 1|. For this you could think of the
triangle inequality, but in the form

|a− b| ≥ |a| − |b|

for all a, b ∈ R. This gives |x+ 1| ≥ |x| − 1. Thus

∣

∣

∣

∣

x

x+ 1
− 1

∣

∣

∣

∣

≤ 1

|x| − 1
.

The important observation is that

x < X < 0 =⇒ |x| > |X| .
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This is used in the second inequality in

∣

∣

∣

∣

x

x+ 1
− 1

∣

∣

∣

∣

≤ 1

|x| − 1
≤ 1

|X| − 1
.

We now demand that

1

|X| − 1
= ε, i.e. |X| = 1

ε
+ 1 or X = −

(

1

ε
+ 1

)

,

since X < 0.

End of Rough work.

Proof Let ε > 0 be given. Choose X = − (1 + 1/ε). Assume x < X. Then

x+ 1 < X + 1 = −1

ε
so |x+ 1| > 1

ε
and

1

|x+ 1| < ε.

So, for such x, we have

∣

∣

∣

∣

x

x+ 1
− 1

∣

∣

∣

∣

=
1

|x+ 1| < ε.

Hence we have verified the ε -X definition that limx→−∞ x/(x+ 1) = 1. �

The proof that limx→+∞ x/(x+ 1) = 1 is simpler and left for student.

Note A common error will be to use the triangle inequality in the form
|x+ 1| ≤ |x|+ 1 and then say

1

|x+ 1| ≤
1

|x|+ 1
,

which is FALSE.

Another common error is to say

∣

∣

∣

∣

1

1 + x

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

x

∣

∣

∣

∣

.

Choose x = −3, say, and this says that 1/2 < 1/3!

Alternative ending 1 As above

|f(x)− L| =
∣

∣

∣

∣

x

x+ 1
− 1

∣

∣

∣

∣

=
1

|x+ 1| ,
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but this time demand
1

|x+ 1| ≤ ε.

Rearrange as

|x+ 1| ≥ 1

ε

and open out as either

x+ 1 ≥ 1

ε
or x+ 1 ≤ −1

ε
.

Since we are looking at large negative x we keep the second inequality

x ≤ −1− 1

ε
,

leading to the same X as before.

Alternative ending 2 Again

|f(x)− L| =
∣

∣

∣

∣

−1
x+ 1

∣

∣

∣

∣

.

This time we note that for x < −1 we have x + 1 is negative and so
−1/(x+ 1) is positive. Then

∣

∣

∣

∣

−1
x+ 1

∣

∣

∣

∣

=
−1
x+ 1

.

Demand this is≤ ε, which rearranges again to x ≤ −1− 1/ε.

Graphically y = x/(x+ 1):

1

x

y
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Limits are unique.

Theorem 1.1.27 Let f : A → R, A ⊆ R and a ∈ R. If limx→a f(x) exists
then it is unique.

Proof Assume that there exists a function f for which the limit is not unique
at some point a. Let ℓ1 < ℓ2 be two of the different limit values (there may
be more than two). In the ε - δ definition of limx→a f(x) choose

ε =
ℓ2 − ℓ1

3
> 0.

Then from definition of limx→a f(x) = ℓ1 we find δ1 > 0 such that 0 <
|x− a| < δ1 implies

|f(x)− ℓ1| < ε. (5)

Similarly, from the definition of limx→a f(x) = ℓ2 we find δ2 > 0 such that
0 < |x− a| < δ2 implies

|f(x)− ℓ2| < ε. (6)

Choose δ = min (δ1, δ2) and x0 : 0 < |x0 − a| < δ. For such a point both
(5) and (6) hold. Hence

|ℓ2 − ℓ1| = |ℓ2 − f(x0) + f(x0)− ℓ1|
≤ |ℓ2 − f(x0)|+ |f(x0)− ℓ1|

by the triangle inequality,

< ε+ ε by (5) and (6) ,

= 2ε

= 2 |ℓ2 − ℓ1| /3.
Dividing through by |ℓ2 − ℓ1| 6= 0 we get 1 < 2/3, a contradiction. Hence
the assumption is false and so, if it exists, limx→a f(x) is unique. �

Note you can now see why you need to learn the definitions. In the Theorem
you are told that limx→a f (x) = L exists. You can only use this information if
you know what saying that the ‘limit of f at a is L’ means, i.e. what it means
mathematically, in symbols.

For one-sided limits we have

Theorem 1.1.28 Suppose that f : A → R is defined for x to the right of
a ∈ R. If limx→a+ f(x) = L exists then the limit is unique.

Suppose that f : A → R is defined for x to the left of a ∈ R. If
limx→a− f(x) = L exists then the limit is unique.
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Proof left to students, no new ideas are required. �

For limits at infinity we have

Theorem 1.1.29 If f : A→ R is defined for all sufficiently large positive x
and limx→+∞ f (x) exists then the limit is unique. If f : A → R is defined
for all sufficiently large negative x and limx→−∞ f(x) exists then the limit is
unique.

Proof Left to students, no new ideas are required. �
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