One sided limits.

Can we calculate $\lim_{x\to 0} \sqrt{x}$? We cannot verify the ε - δ definition because any deleted neighbourhood of 0 must be of the form $(-\delta, 0) \cup (0, \delta)$ and so will contain negative x for which \sqrt{x} is not defined. We must conclude, therefore, that $\lim_{x\to 0} \sqrt{x}$ is **not** defined.

Yet, from the graph,

it seems that we could talk meaningfully of the limit of \sqrt{x} as x approaches 0 from the right.

Definition 1.1.15 *Right hand limit:* Suppose that $f : A \to \mathbb{R}$ is defined for x to the right of $a \in \mathbb{R}$, i.e. in an interval $(a, a + \alpha)$ for some $\alpha > 0$. Then

$$\lim_{x \to a^+} f(x) = L$$

if, and only if, for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $a < x < a + \delta$ then $|f(x) - L| < \varepsilon$. That is:

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in A, a < x < a + \delta \implies |f(x) - L| < \varepsilon.$

We sometimes write $f(a^+)$ for $\lim_{x\to a^+} f(x)$.

Definition 1.1.16 Left hand limit: Suppose that $f : A \to \mathbb{R}$ is defined for x to the left of $a \in \mathbb{R}$, i.e. in an interval $(a - \beta, a)$ for some $\beta > 0$. Then

$$\lim_{x \to a^-} f(x) = L$$

if, and only if, for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $a - \delta < x < a$ then $|f(x) - L| < \varepsilon$. That is:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in A, a - \delta < x < a \implies |f(x) - L| < \varepsilon.$$

We sometimes write $f(a^{-})$ for $\lim_{x\to a^{-}} f(x)$.

Note how in both definitions we exclude x = a as we did in the definition of the (two-sided) limit.

Example 1.1.17 Verify the definition to prove that $\lim_{x\to 0^+} \sqrt{x} = 0$.

Solution Let $\varepsilon > 0$ be given, choose $\delta = \varepsilon^2$ and assume x satisfies $0 < x < 0 + \delta$. For such x we have

$$\left|\sqrt{x}-0\right|<\sqrt{\delta}=\sqrt{\varepsilon^2}=\varepsilon.$$

Hence we have verified the definition that $\lim_{x\to 0^+} \sqrt{x} = 0$.

The following is the first Theorem of the course. The result is useful when a function is defined in different ways to the left and right of the limit point. It is also useful when showing that a limit does not exist.

Theorem 1.1.18 Let $f : A \to \mathbb{R}$ be a function whose domain contains a deleted neighbourhood of $a \in \mathbb{R}$. Then

$$\lim_{x \to a} f(x) = L$$

if, and only if,

$$\lim_{x \to a^+} f(x) = L \quad and \quad \lim_{x \to a^-} f(x) = L.$$

So a (two-sided) limit exists if and only if both one-sided limits exist and are equal.

Proof (\Longrightarrow) Assume $\lim_{x\to a} f(x) = L$. Let $\varepsilon > 0$ be given. Then $\lim_{x\to a} f(x) = L$ implies $\exists \delta > 0 : \forall x : 0 < |x-a| < \delta \Longrightarrow |f(x) - L| < \varepsilon$.

Assume $x : a < x < a + \delta$. Then $0 < x - a < \delta$ which implies $0 < |x - a| < \delta$. Thus, by the previous line, $|f(x) - L| < \varepsilon$. Hence we have shown that

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall x : a < x < a + \delta \Longrightarrow |f(x) - L| < \varepsilon.$$

This is the definition of $\lim_{x\to a+} f(x) = L$.

The verification of $\lim_{x \to a^-} f(x) = L$ will follow from the fact that $a - \delta < x < a$ implies $0 < |x - a| < \delta$.

(\iff) Assume $\lim_{x\to a^+} f(x) = L$ and $\lim_{x\to a^-} f(x) = L$. Let $\varepsilon > 0$ be given.

- (1) $\lim_{x \to a^+} f(x) = L$ implies $\exists \delta_1 > 0$ such that $\forall x : a < x < a + \delta_1 \Longrightarrow |f(x) L| < \varepsilon$.
- (2) $\lim_{x \to a^{-}} f(x) = L$ implies $\exists \delta_2 > 0$ such that $\forall x : a \delta_2 < x < a \Longrightarrow$ $|f(x) - L| < \varepsilon.$

Let $\delta = \min(\delta_1, \delta_2)$ and assume x satisfies $0 < |x - a| < \delta$. There are two cases, x > a and x < a.

If x > a then, combined with $0 < |x - a| < \delta$, this means $a < x < a + \delta$. Yet $\delta \leq \delta_1$ so $a < x < a + \delta_1$ and thus $|f(x) - L| < \varepsilon$ by (1).

If x < a then, combined with $0 < |x - a| < \delta$, this means $a - \delta < x < a$. Yet $\delta \leq \delta_2$ so $a - \delta_2 < x < a$ and thus $|f(x) - L| < \varepsilon$ by (2).

In both cases $|f(x) - L| < \varepsilon$ and so $0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \varepsilon$.

Hence we have verified the definition of $\lim_{x\to a} f(x) = L$.

Note you can now see why you need to learn the definitions. In the Theorem you are told that $\lim_{x\to a} f(x) = L$ exists. You can only use this information if you know what saying that the 'limit of f at a is L' means, i.e. what it means *mathematically*, in *symbols*.

Advice for the exams. This is the first of many theorems in this course and it is important that you learn the statements and proofs of them *all*. Perhaps it is too daunting to learn all the proofs so

- start learning them immediately, do not leave revision until the last minute. Unfortunately you won't remember a proof by reading it, you will have to write it out (probably a number of times).
- note that however long a proof it normally contains only one 'idea'. Remember that idea and the rest of the proof often follows.

You can start, though, with learning the *statements* of the proofs. You should attempt to memorise them so well that you can write them down with no thought. As with definitions if I ask for the statement of a Theorem in the exam then that is the opportunity for you to gain easy marks.

The contrapositive of Theorem 1.1.18 is

Corollary 1.1.19 Let $f : A \to \mathbb{R}$ be a function whose domain contains a deleted neighbourhood of $a \in \mathbb{R}$. Then if either one-sided limit fails to exist at a or they both exist but with different values then the limit at a does not exist.

For an example of an application of this we start with

Definition 1.1.20 The signum function, sgn(x), is defined for $x \neq 0$ by

$$\operatorname{sgn}(x) = \frac{x}{|x|} = \begin{cases} +1 & \text{if } x > 0\\ -1 & \text{if } x < 0 \end{cases}$$

Note that sgn(0) is not defined.

Then, as a second example of a function without a limit at a point we have

Example 1.1.21 The limit

$$\lim_{x \to 0} \operatorname{sgn}\left(x\right)$$

does not exist.

Solution

$$\lim_{x \to 0+} \operatorname{sgn}(x) = \lim_{x \to 0+} 1 = 1 \quad \text{and} \quad \lim_{x \to 0-} \operatorname{sgn}(x) = \lim_{x \to 0-} -1 = -1.$$

Since the limits are different $\lim_{x\to 0} \operatorname{sgn}(x)$ does not exist.

The graph of sgn(x) is

Limit of a function at infinity.

Definition 1.1.22 Assume $f : A \to \mathbb{R}$ is defined for all sufficiently large positive x. Then

$$\lim_{x \to +\infty} f(x) = L$$

if, and only if, for all $\varepsilon > 0$ there exists an X > 0 such that if x > X then $|f(x) - L| < \varepsilon$.

Symbolically

$$\forall \varepsilon > 0, \exists X > 0 : \forall x, \, x > X \implies |f(x) - L| < \varepsilon.$$
(4)

A graphical illustration would be

Definition 1.1.23 Assume $f : A \to \mathbb{R}$ is defined for all sufficiently large negative x. Then

$$\lim_{x \to -\infty} f(x) = L$$

if, and only if, for all $\varepsilon > 0$ there exists an X < 0 such that if x < X then $|f(x) - L| < \varepsilon$.

Symbolically

$$\forall \varepsilon > 0, \exists X < 0 : \forall x, x < X \implies |f(x) - L| < \varepsilon$$

Note 1 The symbols $+\infty$ (also simply known as $\infty)$ and $-\infty$ are not real numbers. You can **not** say

$$\frac{1}{0} = \infty$$
 or $\frac{1}{\infty} = 0$.

The symbols are used in this course simply as a shorthand notation. So $x \to +\infty$ should be read as "x takes arbitrarily large positive values", similarly $x \to -\infty$ is shorthand for "x takes arbitrarily large negative values".

Note 2 In the previous definition we have X < 0 and x < X. This means that x is negative and is of greater magnitude than X, i.e. |x| > |X|. So don't think that x < X means that x is "smaller" than X.

Example 1.1.24 Find

$$\lim_{x \to +\infty} \frac{x^2}{x^2 + 1}$$

and verify the ε - X definition.

Solution When x is large (in magnitude) then $x^2 + 1$ 'looks like' x^2 and so $x^2/(x^2+1)$ 'looks like' $x^2/x^2 = 1$. So we guess that the limit is 1.

Assume $\varepsilon > 0$ has been given, choose $X = 1/\sqrt{\varepsilon} > 0$ and assume x > X. For such x consider

$$|f(x) - L| = \left| \frac{x^2}{x^2 + 1} - 1 \right|$$
$$= \frac{1}{x^2 + 1} < \frac{1}{x^2} < \frac{1}{X^2}$$
$$= \frac{1}{\left(1/\sqrt{\varepsilon}\right)^2} = \varepsilon.$$

Hence we have verified the ε -X definition that $\lim_{x\to+\infty} x^2/(x^2+1) = 1$. Graphically:

The case of $x \to -\infty$ is left to Tutorial.

Example 1.1.25 Find

$$\lim_{x \to +\infty} \frac{x^2}{x^2 - 1} = 1$$

and verify the ε - X definition.

Solution in Tutorial. Assume $\varepsilon > 0$ has been given, choose

$$X = \left(1 + \frac{1}{\varepsilon}\right)^{1/2}$$

and assume x > X. For such x consider

$$|f(x) - L| = \left|\frac{x^2}{x^2 - 1} - 1\right| = \frac{1}{x^2 - 1},$$

since x > 1. Continuing, since x > X and $X^2 = 1 + 1/\varepsilon$, we have

$$\frac{1}{x^2 - 1} \le \frac{1}{X^2 - 1} = \frac{1}{(1 + 1/\varepsilon) - 1} = \varepsilon.$$

That is,

 $|f(x) - L| < \varepsilon.$

Hence we have verified the ε - X definition that $\lim_{x\to -\infty} x^2/(x^2-1) = 1$.

Note In the proof that $\lim_{x\to-\infty} x^2/(x^2+1) = 1$ we made use of the upper bound $1/(x^2+1) < 1/x^2$. It would be false to say $1/(x^2-1) < 1/x^2$. Instead we could increase the numerator and claim $1/(x^2-1) < 2/x^2$ for $x > \sqrt{2}$. This would then lead to the choice of $X = \max(\sqrt{2}, 2/\sqrt{\varepsilon})$.

Another example

Example 1.1.26 Find

$$\lim_{x \to -\infty} \frac{x}{x+1},$$

and verify the ε - X definition.

Solution Rough work When x is large (in magnitude) then x + 1 'looks like' x and so x/(x + 1) 'looks like' x/x = 1. So we guess that the limit is 1.

Assume x < X with X < 0 to be found. In fact, assume x < -1 so, in particular, $x + 1 \neq 0$. For such x consider

$$|f(x) - L| = \left|\frac{x}{x+1} - 1\right| = \frac{1}{|x+1|}.$$

We wish this to be $< \varepsilon$. Thus we have to find *upper bounds* on 1/|x+1| or, equivalently, *lower bounds* on |x+1|. For this you could think of the **triangle inequality**, but in the form

$$|a-b| \ge |a| - |b|$$

for all $a, b \in \mathbb{R}$. This gives $|x+1| \ge |x| - 1$. Thus

$$\left|\frac{x}{x+1} - 1\right| \le \frac{1}{|x| - 1}.$$

The important observation is that

$$x < X < 0 \Longrightarrow |x| > |X|.$$

This is used in the second inequality in

$$\left|\frac{x}{x+1} - 1\right| \le \frac{1}{|x| - 1} \le \frac{1}{|X| - 1}.$$

We now demand that

$$\frac{1}{|X|-1} = \varepsilon$$
, i.e. $|X| = \frac{1}{\varepsilon} + 1$ or $X = -\left(\frac{1}{\varepsilon} + 1\right)$,

since X < 0.

End of Rough work.

Proof Let $\varepsilon > 0$ be given. Choose $X = -(1 + 1/\varepsilon)$. Assume x < X. Then

$$x+1 < X+1 = -\frac{1}{\varepsilon}$$
 so $|x+1| > \frac{1}{\varepsilon}$ and $\frac{1}{|x+1|} < \varepsilon$.

So, for such x, we have

$$\left|\frac{x}{x+1} - 1\right| = \frac{1}{|x+1|} < \varepsilon.$$

Hence we have verified the ε -X definition that $\lim_{x\to -\infty} x/(x+1) = 1$.

The proof that $\lim_{x\to+\infty} x/(x+1) = 1$ is simpler and left for student.

Note A common error will be to use the triangle inequality in the form $|x+1| \le |x|+1$ and then say

$$\frac{1}{|x+1|} \le \frac{1}{|x|+1},$$

which is FALSE.

Another **common error** is to say

$$\left|\frac{1}{1+x}\right| \le \left|\frac{1}{x}\right|.$$

Choose x = -3, say, and this says that 1/2 < 1/3!

Alternative ending 1 As above

$$|f(x) - L| = \left|\frac{x}{x+1} - 1\right| = \frac{1}{|x+1|},$$

but this time demand

$$\frac{1}{|x+1|} \le \varepsilon.$$

Rearrange as

$$|x+1| \ge \frac{1}{\varepsilon}$$

and open out as either

$$x+1 \ge \frac{1}{\varepsilon}$$
 or $x+1 \le -\frac{1}{\varepsilon}$.

Since we are looking at large negative x we keep the second inequality

$$x \le -1 - \frac{1}{\varepsilon},$$

leading to the same X as before.

Alternative ending 2 Again

$$|f(x) - L| = \left|\frac{-1}{x+1}\right|.$$

This time we note that for x < -1 we have x + 1 is *negative* and so -1/(x + 1) is *positive*. Then

$$\left|\frac{-1}{x+1}\right| = \frac{-1}{x+1}.$$

Demand this is $\leq \varepsilon$, which rearranges again to $x \leq -1 - 1/\varepsilon$.

Graphically y = x/(x+1):

Limits are unique.

Theorem 1.1.27 Let $f : A \to \mathbb{R}$, $A \subseteq \mathbb{R}$ and $a \in \mathbb{R}$. If $\lim_{x\to a} f(x)$ exists then it is unique.

Proof Assume that there exists a function f for which the limit is **not** unique at some point a. Let $\ell_1 < \ell_2$ be two of the different limit values (there may be more than two). In the ε - δ definition of $\lim_{x\to a} f(x)$ choose

$$\varepsilon = \frac{\ell_2 - \ell_1}{3} > 0.$$

Then from definition of $\lim_{x\to a} f(x) = \ell_1$ we find $\delta_1 > 0$ such that $0 < |x-a| < \delta_1$ implies

$$|f(x) - \ell_1| < \varepsilon. \tag{5}$$

Similarly, from the definition of $\lim_{x\to a} f(x) = \ell_2$ we find $\delta_2 > 0$ such that $0 < |x - a| < \delta_2$ implies

$$|f(x) - \ell_2| < \varepsilon. \tag{6}$$

Choose $\delta = \min(\delta_1, \delta_2)$ and $x_0 : 0 < |x_0 - a| < \delta$. For such a point both (5) and (6) hold. Hence

$$\begin{aligned} |\ell_2 - \ell_1| &= |\ell_2 - f(x_0) + f(x_0) - \ell_1| \\ &\leq |\ell_2 - f(x_0)| + |f(x_0) - \ell_1| \\ & \text{by the triangle inequality} \\ &< \varepsilon + \varepsilon \quad \text{by (5) and (6),} \end{aligned}$$

$$< \varepsilon + \varepsilon$$
 by (5) and (6)
= 2ε
= $2 |\ell_2 - \ell_1|/3.$

Dividing through by $|\ell_2 - \ell_1| \neq 0$ we get 1 < 2/3, a contradiction. Hence the assumption is false and so, if it exists, $\lim_{x\to a} f(x)$ is unique.

Note you can now see why you need to learn the definitions. In the Theorem you are told that $\lim_{x\to a} f(x) = L$ exists. You can only use this information if you know what saying that the 'limit of f at a is L' means, i.e. what it means *mathematically*, in *symbols*.

For one-sided limits we have

Theorem 1.1.28 Suppose that $f : A \to \mathbb{R}$ is defined for x to the right of $a \in \mathbb{R}$. If $\lim_{x\to a_+} f(x) = L$ exists then the limit is unique.

Suppose that $f : A \to \mathbb{R}$ is defined for x to the left of $a \in \mathbb{R}$. If $\lim_{x\to a^-} f(x) = L$ exists then the limit is unique.

Proof left to students, no new ideas are required.

For limits at infinity we have

Theorem 1.1.29 If $f : A \to \mathbb{R}$ is defined for all sufficiently large positive xand $\lim_{x\to+\infty} f(x)$ exists then the limit is unique. If $f : A \to \mathbb{R}$ is defined for all sufficiently large negative x and $\lim_{x\to-\infty} f(x)$ exists then the limit is unique.

Proof Left to students, no new ideas are required.