One sided limits.

Can we calculate $\lim _{x \rightarrow 0} \sqrt{x}$? We cannot verify the $\varepsilon-\delta$ definition because any deleted neighbourhood of 0 must be of the form $(-\delta, 0) \cup(0, \delta)$ and so will contain negative x for which \sqrt{x} is not defined. We must conclude, therefore, that $\lim _{x \rightarrow 0} \sqrt{x}$ is not defined.

Yet, from the graph,

it seems that we could talk meaningfully of the limit of \sqrt{x} as x approaches 0 from the right.
Definition 1.1.15 Right hand limit: Suppose that $f: A \rightarrow \mathbb{R}$ is defined for x to the right of $a \in \mathbb{R}$, i.e. in an interval $(a, a+\alpha)$ for some $\alpha>0$. Then

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if, and only if, for any $\varepsilon>0$ there exists $\delta>0$ such that if $a<x<a+\delta$ then $|f(x)-L|<\varepsilon$. That is:

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in A, a<x<a+\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

We sometimes write $f\left(a^{+}\right)$for $\lim _{x \rightarrow a^{+}} f(x)$.
Definition 1.1.16 Left hand limit: Suppose that $f: A \rightarrow \mathbb{R}$ is defined for x to the left of $a \in \mathbb{R}$, i.e. in an interval $(a-\beta, a)$ for some $\beta>0$. Then

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if, and only if, for any $\varepsilon>0$ there exists $\delta>0$ such that if $a-\delta<x<a$ then $|f(x)-L|<\varepsilon$. That is:

$$
\forall \varepsilon>0, \exists \delta>0, \forall x \in A, a-\delta<x<a \Longrightarrow|f(x)-L|<\varepsilon .
$$

We sometimes write $f\left(a^{-}\right)$for $\lim _{x \rightarrow a^{-}} f(x)$.
Note how in both definitions we exclude $x=a$ as we did in the definition of the (two-sided) limit.

Example 1.1.17 Verify the definition to prove that $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$.
Solution Let $\varepsilon>0$ be given, choose $\delta=\varepsilon^{2}$ and assume x satisfies $0<x<$ $0+\delta$. For such x we have

$$
|\sqrt{x}-0|<\sqrt{\delta}=\sqrt{\varepsilon^{2}}=\varepsilon
$$

Hence we have verified the definition that $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$.
The following is the first Theorem of the course. The result is useful when a function is defined in different ways to the left and right of the limit point. It is also useful when showing that a limit does not exist.

Theorem 1.1.18 Let $f: A \rightarrow \mathbb{R}$ be a function whose domain contains a deleted neighbourhood of $a \in \mathbb{R}$. Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

if, and only if,

$$
\lim _{x \rightarrow a^{+}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow a-} f(x)=L
$$

So a (two-sided) limit exists if and only if both one-sided limits exist and are equal.

Proof (\Longrightarrow) Assume $\lim _{x \rightarrow a} f(x)=L$. Let $\varepsilon>0$ be given. Then $\lim _{x \rightarrow a} f(x)=$ L implies $\exists \delta>0: \forall x: 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon$.

Assume $x: a<x<a+\delta$. Then $0<x-a<\delta$ which implies $0<|x-a|<$ δ. Thus, by the previous line, $|f(x)-L|<\varepsilon$. Hence we have shown that

$$
\forall \varepsilon>0, \exists \delta>0: \forall x: a<x<a+\delta \Longrightarrow|f(x)-L|<\varepsilon
$$

This is the definition of $\lim _{x \rightarrow a+} f(x)=L$.
The verification of $\lim _{x \rightarrow a-} f(x)=L$ will follow from the fact that $a-\delta<$ $x<a$ implies $0<|x-a|<\delta$.
(\Longleftarrow) Assume $\lim _{x \rightarrow a^{+}} f(x)=L$ and $\lim _{x \rightarrow a-} f(x)=L$. Let $\varepsilon>0$ be given.
(1) $\lim _{x \rightarrow a^{+}} f(x)=L$ implies $\exists \delta_{1}>0$ such that $\forall x: a<x<a+\delta_{1} \Longrightarrow$ $|f(x)-L|<\varepsilon$.
(2) $\lim _{x \rightarrow a-} f(x)=L$ implies $\exists \delta_{2}>0$ such that $\forall x: a-\delta_{2}<x<a \Longrightarrow$ $|f(x)-L|<\varepsilon$.

Let $\delta=\min \left(\delta_{1}, \delta_{2}\right)$ and assume x satisfies $0<|x-a|<\delta$. There are two cases, $x>a$ and $x<a$.

If $x>a$ then, combined with $0<|x-a|<\delta$, this means $a<x<a+\delta$. Yet $\delta \leq \delta_{1}$ so $a<x<a+\delta_{1}$ and thus $|f(x)-L|<\varepsilon$ by (1).

If $x<a$ then, combined with $0<|x-a|<\delta$, this means $a-\delta<x<a$. Yet $\delta \leq \delta_{2}$ so $a-\delta_{2}<x<a$ and thus $|f(x)-L|<\varepsilon$ by (2).

In both cases $|f(x)-L|<\varepsilon$ and so $0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon$.
Hence we have verified the definition of $\lim _{x \rightarrow a} f(x)=L$.
Note you can now see why you need to learn the definitions. In the Theorem you are told that $\lim _{x \rightarrow a} f(x)=L$ exists. You can only use this information if you know what saying that the 'limit of f at a is L ' means, i.e. what it means mathematically, in symbols.

Advice for the exams. This is the first of many theorems in this course and it is important that you learn the statements and proofs of them all. Perhaps it is too daunting to learn all the proofs so

- start learning them immediately, do not leave revision until the last minute. Unfortunately you won't remember a proof by reading it, you will have to write it out (probably a number of times).
- note that however long a proof it normally contains only one 'idea'. Remember that idea and the rest of the proof often follows.

You can start, though, with learning the statements of the proofs. You should attempt to memorise them so well that you can write them down with no thought. As with definitions if I ask for the statement of a Theorem in the exam then that is the opportunity for you to gain easy marks.

The contrapositive of Theorem 1.1.18 is
Corollary 1.1.19 Let $f: A \rightarrow \mathbb{R}$ be a function whose domain contains a deleted neighbourhood of $a \in \mathbb{R}$. Then if either one-sided limit fails to exist at a or they both exist but with different values then the limit at a does not exist.

For an example of an application of this we start with

Definition 1.1.20 The signum function, $\operatorname{sgn}(x)$, is defined for $x \neq 0$ by

$$
\operatorname{sgn}(x)=\frac{x}{|x|}= \begin{cases}+1 & \text { if } x>0 \\ -1 & \text { if } x<0\end{cases}
$$

Note that $\operatorname{sgn}(0)$ is not defined.
Then, as a second example of a function without a limit at a point we have

Example 1.1.21 The limit

$$
\lim _{x \rightarrow 0} \operatorname{sgn}(x)
$$

does not exist.

Solution

$$
\lim _{x \rightarrow 0+} \operatorname{sgn}(x)=\lim _{x \rightarrow 0+} 1=1 \quad \text { and } \quad \lim _{x \rightarrow 0-} \operatorname{sgn}(x)=\lim _{x \rightarrow 0-}-1=-1 .
$$

Since the limits are different $\lim _{x \rightarrow 0} \operatorname{sgn}(x)$ does not exist.
The graph of $\operatorname{sgn}(x)$ is

Limit of a function at infinity.

Definition 1.1.22 Assume $f: A \rightarrow \mathbb{R}$ is defined for all sufficiently large positive x. Then

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

if, and only if, for all $\varepsilon>0$ there exists an $X>0$ such that if $x>X$ then $|f(x)-L|<\varepsilon$.

Symbolically

$$
\begin{equation*}
\forall \varepsilon>0, \exists X>0: \forall x, x>X \Longrightarrow|f(x)-L|<\varepsilon \tag{4}
\end{equation*}
$$

A graphical illustration would be

Definition 1.1.23 Assume $f: A \rightarrow \mathbb{R}$ is defined for all sufficiently large negative x. Then

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

if, and only if, for all $\varepsilon>0$ there exists an $X<0$ such that if $x<X$ then $|f(x)-L|<\varepsilon$.

Symbolically

$$
\forall \varepsilon>0, \exists X<0: \forall x, x<X \Longrightarrow|f(x)-L|<\varepsilon .
$$

Note 1 The symbols $+\infty$ (also simply known as ∞) and $-\infty$ are not real numbers. You can not say

$$
\frac{1}{0}=\infty \quad \text { or } \quad \frac{1}{\infty}=0
$$

The symbols are used in this course simply as a shorthand notation. So $x \rightarrow+\infty$ should be read as " x takes arbitrarily large positive values", similarly $x \rightarrow-\infty$ is shorthand for " x takes arbitrarily large negative values".
Note 2 In the previous definition we have $X<0$ and $x<X$. This means that x is negative and is of greater magnitude than X, i.e. $|x|>|X|$. So don't think that $x<X$ means that x is "smaller" than X.

Example 1.1.24 Find

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}}{x^{2}+1},
$$

and verify the $\varepsilon-X$ definition.

Solution When x is large (in magnitude) then $x^{2}+1$ 'looks like' x^{2} and so $x^{2} /\left(x^{2}+1\right)$ 'looks like' $x^{2} / x^{2}=1$. So we guess that the limit is 1 .

Assume $\varepsilon>0$ has been given, choose $X=1 / \sqrt{\varepsilon}>0$ and assume $x>X$. For such x consider

$$
\begin{aligned}
|f(x)-L| & =\left|\frac{x^{2}}{x^{2}+1}-1\right| \\
& =\frac{1}{x^{2}+1}<\frac{1}{x^{2}}<\frac{1}{X^{2}} \\
& =\frac{1}{(1 / \sqrt{\varepsilon})^{2}}=\varepsilon .
\end{aligned}
$$

Hence we have verified the $\varepsilon-X$ definition that $\lim _{x \rightarrow+\infty} x^{2} /\left(x^{2}+1\right)=1$. Graphically:

The case of $x \rightarrow-\infty$ is left to Tutorial.
Example 1.1.25 Find

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}}{x^{2}-1}=1
$$

and verify the $\varepsilon-X$ definition.
Solution in Tutorial. Assume $\varepsilon>0$ has been given, choose

$$
X=\left(1+\frac{1}{\varepsilon}\right)^{1 / 2}
$$

and assume $x>X$. For such x consider

$$
|f(x)-L|=\left|\frac{x^{2}}{x^{2}-1}-1\right|=\frac{1}{x^{2}-1}
$$

since $x>1$. Continuing, since $x>X$ and $X^{2}=1+1 / \varepsilon$, we have

$$
\frac{1}{x^{2}-1} \leq \frac{1}{X^{2}-1}=\frac{1}{(1+1 / \varepsilon)-1}=\varepsilon
$$

That is,

$$
|f(x)-L|<\varepsilon
$$

Hence we have verified the $\varepsilon-X$ definition that $\lim _{x \rightarrow-\infty} x^{2} /\left(x^{2}-1\right)=1$.

Note In the proof that $\lim _{x \rightarrow-\infty} x^{2} /\left(x^{2}+1\right)=1$ we made use of the upper bound $1 /\left(x^{2}+1\right)<1 / x^{2}$. It would be false to say $1 /\left(x^{2}-1\right)<1 / x^{2}$. Instead we could increase the numerator and claim $1 /\left(x^{2}-1\right)<2 / x^{2}$ for $x>\sqrt{2}$. This would then lead to the choice of $X=\max (\sqrt{2}, 2 / \sqrt{\varepsilon})$.

Another example
Example 1.1.26 Find

$$
\lim _{x \rightarrow-\infty} \frac{x}{x+1}
$$

and verify the $\varepsilon-X$ definition.
Solution Rough work When x is large (in magnitude) then $x+1$ 'looks like' x and so $x /(x+1)$ 'looks like' $x / x=1$. So we guess that the limit is 1 .

Assume $x<X$ with $X<0$ to be found. In fact, assume $x<-1$ so, in particular, $x+1 \neq 0$. For such x consider

$$
|f(x)-L|=\left|\frac{x}{x+1}-1\right|=\frac{1}{|x+1|}
$$

We wish this to be $<\varepsilon$. Thus we have to find upper bounds on $1 /|x+1|$ or, equivalently, lower bounds on $|x+1|$. For this you could think of the triangle inequality, but in the form

$$
|a-b| \geq|a|-|b|
$$

for all $a, b \in \mathbb{R}$. This gives $|x+1| \geq|x|-1$. Thus

$$
\left|\frac{x}{x+1}-1\right| \leq \frac{1}{|x|-1}
$$

The important observation is that

$$
x<X<0 \Longrightarrow|x|>|X| .
$$

This is used in the second inequality in

$$
\left|\frac{x}{x+1}-1\right| \leq \frac{1}{|x|-1} \leq \frac{1}{|X|-1}
$$

We now demand that

$$
\frac{1}{|X|-1}=\varepsilon, \quad \text { i.e. } \quad|X|=\frac{1}{\varepsilon}+1 \quad \text { or } \quad X=-\left(\frac{1}{\varepsilon}+1\right)
$$

since $X<0$.
End of Rough work.
Proof Let $\varepsilon>0$ be given. Choose $X=-(1+1 / \varepsilon)$. Assume $x<X$. Then

$$
x+1<X+1=-\frac{1}{\varepsilon} \quad \text { so } \quad|x+1|>\frac{1}{\varepsilon} \quad \text { and } \quad \frac{1}{|x+1|}<\varepsilon .
$$

So, for such x, we have

$$
\left|\frac{x}{x+1}-1\right|=\frac{1}{|x+1|}<\varepsilon
$$

Hence we have verified the $\varepsilon-X$ definition that $\lim _{x \rightarrow-\infty} x /(x+1)=1$.
The proof that $\lim _{x \rightarrow+\infty} x /(x+1)=1$ is simpler and left for student.
Note A common error will be to use the triangle inequality in the form $|x+1| \leq|x|+1$ and then say

$$
\frac{1}{|x+1|} \leq \frac{1}{|x|+1}
$$

which is FALSE.
Another common error is to say

$$
\left|\frac{1}{1+x}\right| \leq\left|\frac{1}{x}\right|
$$

Choose $x=-3$, say, and this says that $1 / 2<1 / 3$!
Alternative ending 1 As above

$$
|f(x)-L|=\left|\frac{x}{x+1}-1\right|=\frac{1}{|x+1|},
$$

but this time demand

$$
\frac{1}{|x+1|} \leq \varepsilon
$$

Rearrange as

$$
|x+1| \geq \frac{1}{\varepsilon}
$$

and open out as either

$$
x+1 \geq \frac{1}{\varepsilon} \quad \text { or } \quad x+1 \leq-\frac{1}{\varepsilon} .
$$

Since we are looking at large negative x we keep the second inequality

$$
x \leq-1-\frac{1}{\varepsilon},
$$

leading to the same X as before.

Alternative ending 2 Again

$$
|f(x)-L|=\left|\frac{-1}{x+1}\right| .
$$

This time we note that for $x<-1$ we have $x+1$ is negative and so $-1 /(x+1)$ is positive. Then

$$
\left|\frac{-1}{x+1}\right|=\frac{-1}{x+1} .
$$

Demand this is $\leq \varepsilon$, which rearranges again to $x \leq-1-1 / \varepsilon$.
Graphically $y=x /(x+1)$:

Limits are unique.

Theorem 1.1.27 Let $f: A \rightarrow \mathbb{R}, A \subseteq \mathbb{R}$ and $a \in \mathbb{R}$. If $\lim _{x \rightarrow a} f(x)$ exists then it is unique.

Proof Assume that there exists a function f for which the limit is not unique at some point a. Let $\ell_{1}<\ell_{2}$ be two of the different limit values (there may be more than two). In the $\varepsilon-\delta$ definition of $\lim _{x \rightarrow a} f(x)$ choose

$$
\varepsilon=\frac{\ell_{2}-\ell_{1}}{3}>0
$$

Then from definition of $\lim _{x \rightarrow a} f(x)=\ell_{1}$ we find $\delta_{1}>0$ such that $0<$ $|x-a|<\delta_{1}$ implies

$$
\begin{equation*}
\left|f(x)-\ell_{1}\right|<\varepsilon . \tag{5}
\end{equation*}
$$

Similarly, from the definition of $\lim _{x \rightarrow a} f(x)=\ell_{2}$ we find $\delta_{2}>0$ such that $0<|x-a|<\delta_{2}$ implies

$$
\begin{equation*}
\left|f(x)-\ell_{2}\right|<\varepsilon \tag{6}
\end{equation*}
$$

Choose $\delta=\min \left(\delta_{1}, \delta_{2}\right)$ and $x_{0}: 0<\left|x_{0}-a\right|<\delta$. For such a point both (5) and (6) hold. Hence

$$
\begin{aligned}
\left|\ell_{2}-\ell_{1}\right| & =\left|\ell_{2}-f\left(x_{0}\right)+f\left(x_{0}\right)-\ell_{1}\right| \\
& \leq\left|\ell_{2}-f\left(x_{0}\right)\right|+\left|f\left(x_{0}\right)-\ell_{1}\right|
\end{aligned}
$$

by the triangle inequality,

$$
\begin{aligned}
& <\varepsilon+\varepsilon \text { by (5) and (6), } \\
& =2 \varepsilon \\
& =2\left|\ell_{2}-\ell_{1}\right| / 3 .
\end{aligned}
$$

Dividing through by $\left|\ell_{2}-\ell_{1}\right| \neq 0$ we get $1<2 / 3$, a contradiction. Hence the assumption is false and so, if it exists, $\lim _{x \rightarrow a} f(x)$ is unique.

Note you can now see why you need to learn the definitions. In the Theorem you are told that $\lim _{x \rightarrow a} f(x)=L$ exists. You can only use this information if you know what saying that the 'limit of f at a is L ' means, i.e. what it means mathematically, in symbols.

For one-sided limits we have
Theorem 1.1.28 Suppose that $f: A \rightarrow \mathbb{R}$ is defined for x to the right of $a \in \mathbb{R}$. If $\lim _{x \rightarrow a+} f(x)=L$ exists then the limit is unique.

Suppose that $f: A \rightarrow \mathbb{R}$ is defined for x to the left of $a \in \mathbb{R}$. If $\lim _{x \rightarrow a-} f(x)=L$ exists then the limit is unique.

Proof left to students, no new ideas are required.
For limits at infinity we have
Theorem 1.1.29 If $f: A \rightarrow \mathbb{R}$ is defined for all sufficiently large positive x and $\lim _{x \rightarrow+\infty} f(x)$ exists then the limit is unique. If $f: A \rightarrow \mathbb{R}$ is defined for all sufficiently large negative x and $\lim _{x \rightarrow-\infty} f(x)$ exists then the limit is unique.

Proof Left to students, no new ideas are required.

